

Squib Documentation

Welcome to the official Squib documentation!

Contents:

	Install & Update
	Pre-requisites

	Typical Install

	Updating Squib

	OS-Specific Quirks

	Learning Squib
	Hello, World! Dissected
	Dissection of “Even Bigger…”

	The Squib Way pt 0: Learning Ruby
	Not a Programmer?

	What You DON’T Need To Know about Ruby for Squib

	What You Need to Know about Ruby for Squib

	Find a good text editor

	Command line basics

	Edit-Run-Check.

	Plan to Fail

	Ruby Learning Resources

	The Squib Way pt 1: Zero to Game
	Prototyping with Squib

	Get Installed and Set Up

	Our Idea: Familiar Fights

	Running Your Squib Build

	Data or Layout?

	Initial Card Layout

	Multiple Cards

	To the table!

	Next up…

	The Squib Way pt 2: Iconography
	Art: Graphic Design vs. Illustration

	Iconography in Popular Games

	How Squib Supports Iconography

	Back to the Example: Drones vs. Humans

	Why Ruby+YAML+Spreadsheets Works

	Illustration: One per Card

	Learn by Example

	Are We Done?

	The Squib Way pt 3: Workflows
	Organizing Your Project

	Rakefile: Your Project’s Butler

	Ideas to be written up

	The Squib Way pt 4: Ruby Power!

	Squib in Action
	My Projects

	Open Source Projects using Squib

	Other Projects Using Squib

	Want yours here?

	Squib + Game-Icons.net
	Install the Gem

	Find Your Icon

	Use the SVG File

	Recolor the SVG file

	Use the SVG XML Data

	Path Weirdness

	Squib + Git

	Autobuild with Guard
	Project layout

	Using Guard + Rake

	Parameters are Optional

	Squib Thinks in Arrays
	Using range to specify cards

	Behold! The Power of Ruby Arrays

	Examples

	Contribute Recipes!

	Layouts are Squib’s Best Feature
	Order of Precedence for Options

	When Layouts Are Similar, Use extends

	Yes, extends is Multi-Generational

	Yes, extends has Multiple Inheritance

	Multiple Layout Files get Merged

	Squib Comes with Built-In Layouts
	fantasy.yml

	economy.yml

	tuck_box.yml

	hand.yml

	party.yml

	playing_card.yml

	See Layouts in Action

	Be Data-Driven with XLSX and CSV
	Squib::DataFrame, or a Hash of Arrays

	Quantity Explosion

	Unit Conversion
	Cells

	Samples
	_units.rb

	_cells.rb

	XYWH Shorthands
	Samples
	_shorthands.rb

	Specifying Colors & Gradients
	Colors
	by hex-string

	by name

	by custom name

	Gradients

	Samples
	Sample: colors and color constants

	Sample: gradients

	Sample: Switch color based on variable

	The Mighty text Method
	Fonts

	Width and Height

	Autoscaling Font Size

	Hints

	Extents

	Embedding Images

	Markup

	Samples
	Sample: _text.rb

	Sample: text_options.rb

	Sample: embed_text.rb

	Sample: config_text_markup.rb

	Sample: _autoscale_font.rb

	Always Have Bleed
	Summary

	What is a bleed?

	Usage

	Example

	Templates

	Configuration Options
	Options are available as methods

	Set options programmatically

	Making Squib Verbose

	Vector vs. Raster Backends

	Group Your Builds

	Sprue Thy Sheets
	Using a Sprue

	Make Your Own Sprue

	Sprue Format
	Top-Level parameters

	cards

	crop_line

	List of Built-in Sprues
	a4_euro_card.yml

	a4_poker_card_8up.yml

	a4_usa_card.yml

	letter_poker_card_9up.yml

	letter_poker_foldable_8up.yml

	printplaygames_18up.yml

	drivethrucards_1up.yml

	Get Help and Give Help
	Show Your Pride

	Get Help

	Help by Troubleshooting

	Help by Beta Testing
	Beta: Using Pre-Builds

	Beta: About versions

	Beta: About Bundler+RubyGems

	Make a Sprue!

	Make a Layout!

	Help by Fixing Bugs

	Help by Contributing Code

	CLI Reference
	squib make_sprue

	squib new
	Basic

	--advanced

	DSL Reference
	Squib::Deck.new
	Options

	Examples

	background
	Options

	Examples

	build
	Required Arguments

	Examples

	build_groups
	Arguments

	Examples

	circle
	Options

	Examples

	cm
	Parameters

	Examples

	Squib.configure
	Options

	Exmaples

	csv
	Options

	Individual Pre-processing

	Examples

	curve
	Options

	Examples

	cut_zone
	Options

	Examples

	Squib::DataFrame
	columns become methods

	#columns

	#ncolumns

	#col?(name)

	#row(i)

	#nrows

	#to_json

	#to_pretty_json

	#to_pretty_text

	disable_build
	Required Arguments

	Examples

	disable_build_globally
	Required Arguments

	Examples

	ellipse
	Options

	Examples

	enable_build
	Required Arguments

	Examples

	disable_build_globally
	Required Arguments

	Examples

	grid
	Options

	Examples

	hand
	Options

	Examples

	hint
	Options

	Examples

	inches
	Parameters

	Examples

	line
	Options

	Examples

	mm
	Parameters

	Examples

	png
	Options

	Examples

	polygon
	Options

	Examples

	print_system_fonts
	Options

	Examples

	rect
	Options

	Examples

	safe_zone
	Options

	Examples

	save
	Options

	Examples

	save_pdf
	Options

	Examples

	save_png
	Options

	Drop Shadow

	Examples

	save_sheet
	Options

	Examples

	showcase
	Options

	Examples

	star
	Options

	Examples

	svg
	Options

	Examples

	system_fonts
	Options

	Examples

	text
	Options

	Markup

	Embedded Icons

	Examples

	triangle
	Options

	Examples

	use_layout
	Options

	Examples

	xlsx
	Options

	Individual Pre-processing

	Examples

	yaml
	Options

	Individual Pre-processing

	Examples

Indices and tables

	Index

	Search Page

Install & Update

Squib is a Ruby gem, and installation is handled like most gems.

Pre-requisites

	Ruby 2.4+ [https://www.ruby-lang.org]

Squib works with both x86 and x86_64 versions of Ruby.

On Windows, we recommend using RubyInstaller [https://rubyinstaller.org/]. Use the version with DevKit.

Typical Install

Regardless of your OS, installation is

$ gem install squib

If you’re using Bundler [http://bundler.io], add this line to your application’s Gemfile:

gem 'squib'

And then execute:

$ bundle install

Squib has some native dependencies, such as Cairo [https://github.com/rcairo/rcairo], Pango [http://ruby-gnome2.sourceforge.jp/hiki.cgi?Pango%3A%3ALayout], and Nokogiri [http://nokogiri.org/], which will compile upon installation - this is normal.

Updating Squib

At this time we consider Squib to be still in initial development, so we are not supporting older versions. Please upgrade your Squib as often as possible.

To keep track of when new Squib releases come out, you can watch the BoardGameGeek thread [https://boardgamegeek.com/thread/1293453] or follow the RSS feed for Squib on its RubyGems page [https://rubygems.org/gems/squib].

In RubyGems, the command looks like this:

$ gem up squib

As a quirk of Ruby/RubyGems, sometimes older versions of gems get caught in caches. You can see which versions of Squib are installed and clean them up, use gem list and gem cleanup:

$ gem list squib

*** LOCAL GEMS ***

squib (0.9.0, 0.8.0)

$ gem cleanup squib
Cleaning up installed gems...
Attempting to uninstall squib-0.8.0
Successfully uninstalled squib-0.8.0
Clean Up Complete

This will remove all prior versions of Squib.

As a sanity check, you can see what version of Squib you’re using by referencing the Squib::VERSION constant:

require 'squib'
puts Squib::VERSION

OS-Specific Quirks

See the wiki [http://github.com/andymeneely/squib/wiki] for idiosyncracies about specific operating systems, dependency clashes, and other installation issues. If you’ve run into issues and solved them, please post your solutions for others!

Learning Squib

	Hello, World! Dissected

	The Squib Way pt 0: Learning Ruby

	The Squib Way pt 1: Zero to Game

	The Squib Way pt 2: Iconography

	The Squib Way pt 3: Workflows

	The Squib Way pt 4: Ruby Power!

	Squib in Action

	Squib + Game-Icons.net

	Squib + Git

	Autobuild with Guard

Hello, World! Dissected

After seeing Squib’s landing page [http://squib.rocks], your might find it helpful to dissect what’s really going on in each line of code of a basic Squib snippet.

	1
2
3
4
5
6
7
8

	require 'squib'

Squib::Deck.new width: 825, height: 1125, cards: 2 do
 background color: 'pink'
 rect
 text str: ['Hello', 'World!']
 save_png prefix: 'hello_'
end

Let’s dissect this:

	Line 1: this code will bring in the Squib library for us to use. Keep this at the top.

	Line 2: By convention, we put a blank line between our require statements and the rest of our code

	Line 3: Define a new deck of cards. Just 2 cards. 825 pixels wide etc. Squib also supports Unit Conversion if you prefer to specify something like '2.75in'.

	Line 4: Set the background to pink. Colors can be in various notations, and supports linear and radial graidents - see Specifying Colors & Gradients.

	Line 5: Draw a rectangle around the edge of each card. Note that this has no arguments, because Parameters are Optional. The defaults can be found in the DSL reference for the rect method.

	Line 6: Put some text in upper-left the corner of the card, using the default font, etc. See the text DSL method for more options. The first card will have 'Hello' and the second card will have 'World' because Squib Thinks in Arrays.

	Line 7: Save our card out to a png files called hello_00.png and hello_01.png saved in the _output folder.

Dissection of “Even Bigger…”

On Squib’s landing page [http://squib.rocks] we end with a pretty complex example. It’s compact and designed to show how much you can get done with a little bit of code. Here’s a dissection of that.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	require 'squib'

Squib::Deck.new(cards: 4, layout: %w(hand.yml even-bigger.yml)) do
 background color: '#230602'
 deck = xlsx file: 'even-bigger.xlsx'
 svg file: deck['Art'], layout: 'Art'

 %w(Title Description Snark).each do |key|
 text str: deck[key], layout: key
 end

 %w(Attack Defend Health).each do |key|
 svg file: "#{key.downcase}.svg", layout: "#{key}Icon"
 text str: deck[key], layout: key
 end

 save_png prefix: 'even_bigger_'
 showcase file: 'showcase.png', fill_color: '#0000'
 hand file: 'hand.png', trim: 37.5, trim_radius: 25, fill_color: '#0000'
end

	Line 3: Make 4 cards. Use two layouts: the built-in hand.yml (see Layouts are Squib’s Best Feature) and then our own layout. The layouts get merged, with our own even-bigger.yml overriding hand.yml whenever they collide.

	Line 5: Read some data from an Excel file, which amounts to a column-based hash of arrays, so that each element of an array corresponds to a specific data point to a given card. For example, 3 in the 'Attack' column will be put on the second card.

	Line 6: Using the Excel data cell for the filename, we can customize a different icon for every card. But, every SVG in this command will be styled according to the Art entry in our layout (i.e. in even-bigger.yml)

	Line 8: Iterate over an array of strings, namely, 'Title', 'Description', and 'Snark'.

	Line 9: Draw text for the (Title, Description, or Snark), using their styling rules in our layout.

	Line 13: Using Ruby String interpolation [https://en.wikibooks.org/wiki/Ruby_Programming/Syntax/Literals#Interpolation], lookup the appropriate icon (e.g. 'attack.svg'), converted to lowercase letters, and then using the Icon layout of that for styling (e.g. 'AttackIcon' or 'DefendIcon')

	Line 17: Render every card to individual PNG files

	Line 18: Render a “showcase” of cards, using a perspective-reflect effect. See showcase method.

	Line 19: Render a “hand” of cards (spread over a circle). See hand method.

The Squib Way pt 0: Learning Ruby

This guide is for folks who are new to coding and/or Ruby. Feel free to skip it if you already have some coding experience.

Not a Programmer?

I’m not a programmer, but I want to use Squib. Can you make it easy for non-programmers?

—Frequently Asked Question

If you want to use Squib, then you want to automate the graphics generation of a tabletop game in a data-driven way. You want to be able to change your mind about icons, illustrations, stats, and graphic design - then rebuild your game with a just a few keystrokes. Essentially, you want to give a list of instructions to the computer, and have it execute your bidding.

If you want those things, then I have news for you. I think you are a programmer… who just needs to learn some coding. And maybe Squib will finally be your excuse!

Squib is a Ruby library. To learn Squib, you will need to learn Ruby. There is no getting around that fact. Don’t fight it, embrace it.

Fortunately, Squib doesn’t really require tons of Ruby-fu to get going. You can really just start from the examples and go from there. And I’ve done my best to keep to Ruby’s own philosophy that programming in it should be a delight, not a chore.

Doubly fortunately,

	Ruby is wonderfully rich in features and expressive in its syntax.

	Ruby has a vibrant, friendly community with people who love to help. I’ve always thought that Ruby people and board game people would be good friends if they spent more time together.

	Ruby is the language of choice for many new programmers, including many universities.

	Ruby is also “industrial strength”, so it really can do just about anything you need it to.

Plus, resources for learning how to code are ubiquitous on the Internet.

In this article, we’ll go over some topics that you will undoubtedly want to pick up if you’re new to programming or just new to Ruby.

What You DON’T Need To Know about Ruby for Squib

Let’s get a few things out of the way. When you are out there searching the interwebs for solutions to your problems, you will not need to learn anything about the following things:

	Rails. Ruby on Rails is a heavyweight framework for web development. It’s awesome in its own way, but it’s not relevant to learning Ruby as a language by itself. Squib is about scripting, and will never (NEVER!) be a web app.

	Object-Oriented Programming. While OO is very important for developing long-term, scalable applications, some of the philosophy around “Everything in Ruby is an object” can be confusing to newcomers. It’s not super-important to grasp this concept for Squib. This means material about classes, modules, mixins, attributes, etc. are not really necessary for Squib scripts. (Contributing to Squib, that’s another matter - we use OO a lot internally.)

	Metaprogramming. Such a cool thing in Ruby… don’t worry about it for Squib. Metaprogramming is for people who literally sleep better at night knowing their designs are extensible for years of software development to come. You’re just trying to make a game.

What You Need to Know about Ruby for Squib

I won’t give you an introduction to Ruby - other people do that quite nicely (see Resources at the bottom of this article). Instead, as you go through learning Ruby, you should pay special attention to the following:

	Comments

	Variables

	require

	What do and end mean

	Arrays, particularly since most of Squib’s arguments are usually Arrays

	Strings and symbols

	String interpolation

	Hashes are important, especially for Excel or CSV importing

	Editing Yaml. Yaml is not Ruby per se, but it’s a data format common in the Ruby community and Squib uses it in a couple of places (e.g. layouts and the configuration file)

	Methods are useful, but not immediately necessary, for most Squib scripts.

If you are looking for some advanced Ruby-fu, these are useful to brush up on:

	Enumerable - everything you can do with iterating over an Array, for example

	map - convert one Array to another

	zip - combine two arrays in parallel

	inject - process one Enumerable and build up something else

Find a good text editor

The text editor is a programmer’s most sacred tool. It’s where we live, and it’s the tool we’re most passionate (and dogmatic) about. My personal favorite editors are SublimeText [http://www.sublimetext.com/3] and Atom [http://atom.io]. There are a bajillion others. The main things you’ll need for editing Ruby code are:

	Line numbers. When you get an error, you’ll need to know where to go.

	Monospace fonts. Keeping everything lined up is important, especially in keeping indentation.

	Syntax highlighting. You can catch all kinds of basic syntax mistakes with syntax highlighting. My personal favorite syntax highlighting theme is Monokai.

	Manage a directory of files. Not all text editors support this, but Sublime and Atom are particularly good for this (e.g. Ctrl+P can open anything!). Squib is more than just the deck.rb - you’ve got layout files, a config file, your instructions, a build file, and a bunch of other stuff. Your editor should be able to pull those up for you in a few keystrokes so you don’t have to go all the way over to your mouse.

There are a ton of other things that these editors will do for you. If you’re just starting out, don’t worry so much about customizing your editor just yet. Work with it for a while and get used to the defaults. After 30+ hours in the editor, only then should you consider installing plugins and customizing options to fit your preferences.

Command line basics

Executing Ruby is usually done through the command line. Depending on your operating system, you’ll have a few options.

	On Macs, you’ve got the Terminal, which is essentially a Unix shell in Bash (Bourne-Again SHell). This has an amazing amount of customization possible with a long history in the Linux/Unix/BSD world.

	On Windows, there’s the Command Prompt (Windows Key, cmd). It’s a little janky, but it’ll do. I’ve developed Squib primarily in Windows using the Command Prompt.

	If you’re on Linux/BSD/etc, you undoubtedly know what the command line is.

For example:

$ cd c:\game-prototypes
$ gem install squib
$ squib new tree-gnome-blasters
$ ruby deck.rb
$ rake
$ bundle install
$ gem up squib

This might seem arcane at first, but the command line is the single most powerful and expressive tool in computing… if you know how to harness it.

Edit-Run-Check.

To me, the most important word in all of software development is incremental. When you’re climbing up a mountain by yourself, do you wait to put in anchors until you reach the summit? No!! You anchor yourself along the way frequently so that when you fall, you don’t fall very far.

In programming, you need to be running your code often. Very often. In an expressive language like Ruby, you should be running your code every 60-90 seconds (seriously). Why? Because if you make a mistake, then you know that you made it in the last 60-90 seconds, and your problem is that much easier to solve. Solving one bug might take two minutes, but solving three bugs at once will take ~20 minutes (empirical studies have actually backed this up exponentiation effect).

How much code can you write in 60-90 seconds? Maybe 1-5 lines, for fast typists. Think of it this way: the longer you go without running your code, the more debt you’re accruing because it will take longer to fix all the bugs you haven’t fixed yet.

That means your code should be stable very often. You’ll pick up little tricks here and there. For example, whenever you type a (, you should immediately type a) afterward and edit in the middle (some text editors even do this for you). Likewise, after every do you should type end (that’s a Ruby thing). There are many, many more. Tricks like that are all about reducing what you have to remember so that you can keep your code stable.

With Squib, you’ll be doing one other thing: checking your output. Make sure you have some specific cards to check constantly to make sure the card is coming out the way you want. The Squib method save_png (or ones like it) should be one of the first methods you write when you make a new deck.

As a result of all these, you’ll have lots of windows open when working with Squib. You’ll have a text editor to edit your source code, your spreadsheet (if you’re working with one), a command line prompt, and a preview of your image files. It’s a lot of windows, I know. That’s why computer geeks usually have multiple monitors!

So, just to recap: your edit-run-check cycle should be very short. Trust me on this one.

Plan to Fail

If you get to a point where you can’t possibly figure out what’s going on that means one thing.

You’re human.

Everyone runs into bugs they can’t fix. Everyone. Take a break. Put it down. Talk about it out loud. And then, of course, you can always Get Help and Give Help.

Ruby Learning Resources

Here are some of my favorite resources for getting started with Ruby. A lot of them assume you are also new to programming in general. They do cover material that isn’t very relevant to Squib, but that’s okay - learning is never wasted, only squandered.

	RubyMonk.com [https://rubymonk.com/]

	An interactive explanation through Ruby. Gets a bit philosophical, but hey, what else would you expect from a monk?

	Pragmatic Programmer’s Guide to Ruby (The PickAxe Book) [http://ruby-doc.com/docs/ProgrammingRuby/]

	One of the best comprehensive resources out there for Ruby - available for free!

	Ruby’s Own Website: Getting Started [https://www.ruby-lang.org/en/documentation/quickstart/]

	This will take you through the basics of programming in Ruby. It works mostly from the Interactive Ruby shell irb, which is pretty helpful for seeing how things work and what Ruby syntax looks like.

	Why’s Poignant Guide to Ruby [http://poignant.guide/]

	No list of Ruby resources is complete without a reference to this, well, poignant guide to Ruby. Enjoy.

	The Pragmatic Programmer [http://www.amazon.com/The-Pragmatic-Programmer-Journeyman-Master/dp/020161622X]

	The best software development book ever written (in my opinion). If you are doing programming and you have one book on your shelf, this is it. Much of what inspired Squib came from this thinking.

The Squib Way pt 1: Zero to Game

I’ve always felt that the Ruby community and the tabletop game design community had a lot in common, and a lot to learn from each other. Both are all about testing. All about iterative development. Both communities are collegial, creative, and fun.

But the Ruby community, and the software development community generally, has a lot to teach us game designers about how to develop something. Ruby has a “way” of doing things [http://therubyway.io/] that is unique and helpful to game designers.

In this series of guides, I’ll introduce you to Squib’s key features and I’ll walk you through a basic prototype. We’ll also take a more circuitous route than normal so that I can touch upon some key design principles and good software development habits so that you can make your Squib scripts maintainable, understandable, flexible, and changeable.

Prototyping with Squib

Squib is all about being able to change your mind quickly. Change data, change layout, change artwork, change text. But where do we start? What do we work on first?

The key to prototyping tabletop games is playtesting. At the table. With humans. Printed components. That means that we need to get our idea out of our brains and onto pieces of paper as fast as possible.

But! We also want to get the second (and third and fourth and fifth…) version of our game back to the playtesting table quickly, too. If we work with Squib from day one, our ability to react to feedback will be much smoother once we’ve laid the groundwork.

Get Installed and Set Up

The ordinary installation is like most Ruby gems:

$ gem install squib

See Install & Update for more details.

This guide also assumes you’ve got some basic Ruby experience, and you’ve got your tools set up (i.e. text editor, command line, image preview, etc). See The Squib Way pt 0: Learning Ruby to see my recommendations.

Our Idea: Familiar Fights

Let’s start with an idea for a game: Familiar Fights. Let’s say we want to have players fight each other based on collecting cards that represent their familiars, each with different abilities. We’ll have two factions: drones and humans. Each card will have some artwork in it, and some text describing their powers.

First thing: the title. It stinks, I know. It’s gonna change. So instead of naming the directory after our game and getting married to our bad idea, let’s give our game a code name. I like to use animal names, so let’s go with Arctic Lemming:

$ squib new arctic-lemming
$ cd arctic-lemming
$ ls
ABOUT.md Gemfile PNP NOTES.md Rakefile _output config.yml deck.rb layout.yml

Go ahead and put “Familiar Fights” as an idea for a title in the IDEAS.md file.

If you’re using Git or other version control, now’s a good time to commit. See Squib + Git.

Running Your Squib Build

The simplest way to build with Squib is to run this command line:

$ ruby deck.rb

Squib cares about which directory you are currently in. For example, it will create that _output directory in the current directory, and it will look up files according to your current directory.

An alternative to running the ruby command directly is to use Ruby’s Rake build system.
Rakefiles are designed for building projects that have lots of files (that’s us!).
The default Rakefile that Squib generates simply runs the deck.rb. To use Rake, you run this from this directory or any subdirectory.

$ rake

We’ll discuss Rake and various other workflow things like auto-building in the The Squib Way pt 3: Workflows.

Data or Layout?

From a prototyping standpoint, we really have two directions we can work from:

	Laying out an example card

	Working on the deck data

There’s no wrong direction here - we’ll need to do both to get our idea onto the playtesting table. Go where your inspiration guides you. For this example, let’s say I’ve put together ideas for four cards. Here’s the data:

	name

	faction

	power

	Ninja

	human

	Use the power of another player

	Pirate

	human

	Steal 1 card from another player

	Zombie

	drone

	Take a card from the discard pile

	Robot

	drone

	Draw two cards

If you’re a spreadsheet person, go ahead and put this into Excel (in the above format). Or, if you want to be plaintext-friendly, put it into a comma-separated format (CSV). Like this:

Initial Card Layout

Ok let’s get into some code now. Here’s an “Hello, World” code snippet

Let’s dissect this:

	Line 1: this code will bring in the Squib library for us to use. Keep this at the top.

	Line 2: By convention, we put a blank line between our require statements and the rest of our code

	Line 3: Define a new deck of cards. Just 1 card for now

	Line 4: Set the background to pink. Colors can be in various notations - see Specifying Colors & Gradients.

	Line 5: Draw a rectangle around the edge of the deck. Note that this has no arguments, because Parameters are Optional.

	Line 6: Put some text in upper-left the corner of the card.

	Line 7: Save our card out to a png file called card_00.png. Ordinarily, this will be saved to _output/card_00.png, but in our examples we’ll be saving to the current directory (because this documentation has its examples as GitHub gists and gists don’t have folders - I do not recommend having dir: '.' in your code)

By the way, this is what’s created:

 The Squib Way pt 2: Iconography

The Squib Way pt 2: Iconography

In the previous guide, we walked you through the basics of going from ideas in your head to a very simple set of cards ready for playtesting at the table. In this guide we take the next step: creating a visual language.

Art: Graphic Design vs. Illustration

A common piece of advice in the prototyping world is “Don’t worry about artwork, just focus on the game and do the artwork later”. That’s good advice, but a bit over-simplified. What folks usually mean by “artwork” is really “illustration”, like the oil painting of a wizard sitting in the middle of the card or the intricate border around the edges.

But games are more than just artwork with text - they’re a system of rules that need to be efficiently conveyed to the players. They’re a visual language. When players are new to your game, the layout of the cards need to facilitate learning. When players are competing in their 30th game, though, they need the cards to maximize usability by reducing their memory load, moving gameplay along efficiently, and provide an overall aesthetic that conveys the game theme. That’s what graphic design is all about, and requires a game designer’s attention much more than commissioning an illustration.

Developing the visual language on your cards is not a trivial task. It’s one that takes a lot of iteration, feedback, testing, improvement, failure, small successes, and reverse-engineering. It’s something you should consider in your prototype early on. It’s also a series of decisions that don’t necessarily require artistic ability - just an intentional effort applied to usability.

Icons and the their placement are, perhaps, the most efficient and powerful tools in your toolbelt for conveying your game’s world. In the prototyping process, you don’t need to be worried about using icons that are your final icons, but you should put some thought into what the visuals will look like because you’ll be iterating on that in the design process.

Iconography in Popular Games

When you get a chance, I highly recommend studying the iconography of some popular games. What works for you? What didn’t? What kinds of choices did the designers make that works for their game? Here are a few that come my mind:

Race for the Galaxy

The majority of the cards in RFTG have no description text on them, and yet the game contains hundreds of unique cards. RFTG has a vast, rich visual iconography that conveys a all of the bonuses and trade-offs of a card efficiently to the user. As a drawback, though, the visual language can be intimidating to new players - every little symbol and icon means a new thing, and sometimes you just need to memorize that “this card does that”, until you realize that the icons show that.

But once you know the structure of the game and what various bonuses mean, you can understand new cards very easily. Icons are combined in creative ways to show new bonuses. Text is used only when a bonus is much more complicated than what can be expressed with icons. Icons are primarily arranged along left side of the card so you can hold them in your hand and compare bonuses across cards quickly. All of these design decisions match the gameplay nicely because the game consists of a lot of scrolling through cards in your hand and evaluating which ones you want to play.

Go check out images of Race for the Galaxy on BoardGameGeek.com [https://boardgamegeek.com/boardgame/28143/race-galaxy].

Dominion

Unlike RFTG, Dominion has a much simpler iconography. Most of the bonuses are conveyed in a paragraph of text in the description, with a few classifications conveyed by color or format. The text has icons embedded in it to tie in the concept of Gold, Curses, or Victory Points.

But Dominion’s gameplay is much different: instead of going through tons of different cards, you’re only playing with 10 piles of cards in front of you. So each game really just requires you to remember what 10 cards mean. Once you purchase a card and it goes into your deck, you don’t need to evaluate its worth quickly as in RFTG because you already bought it. Having most of the game’s bonuses in prose means that new bonuses are extremely flexible in their expression. As a result, Dominion’s bonuses and iconography is much more about text and identifying known cards than about evaluating new ones.

Go check out images of Dominion on BoardGameGeek.com [https://boardgamegeek.com/boardgame/36218/dominion]

How Squib Supports Iconography

Squib is good for supporting any kind of layout you can think of, but it’s also good for supporting multiple ways of translating your data into icons on cards. Here are some ways that Squib provides support for your ever-evolving iconography:

	svg method, and all of its features like scaling, ID-specific rendering, direct XML manipulation, and all that the SVG file format has to offer

	png method, and all of its features like blending operators, alpha transparency, and masking

	Layout files allow multiple icons for one data column (see Layouts are Squib’s Best Feature)

	Layout files also have the extends feature that allows icons to inherit details from each other

	The range option on text, svg, and png allows you to specify text and icons for any subset of your cards

	The text method allows for embedded icons.

	The text method allows for Unicode characters (if the font supports it).

	Ruby provides neat ways of aggregating data with inject, map, and zip that gives you ultimate flexibility for specifying different icons for different cards.

Back to the Example: Drones vs. Humans

Ok, let’s go back to our running example, project arctic-lemming from Part 1. We created cards for playtesting, but we never put down the faction for each card. That’s a good candidate for an icon.

Let’s get some stock icons for this exercise. For this example, I went to http://game-icons.net. I set my foreground color to black, and background to white. I then downloaded “auto-repair.svg” and “backup.svg”. I’m choosing not to rename the files so that I can find them again on the website if I need to. (If you want to know how to do this process DIRECTLY from Ruby, and not going to the website, check out my other Ruby gem called game_icons [https://github.com/andymeneely/game_icons] - it’s tailor-made for Squib! We’ve got some documentation in Squib + Game-Icons.net

When we were brainstorming our game, we placed one category of icons in a single column (“faction”). Presumably, one would want the faction icon to be in the same place on every card, but a different icon depending on the card’s faction. There are a couple of ways of accomplishing this in Squib. First, here some less-than-clean ways of doing it:

svg range: 0, file: 'auto_repair.svg' # hard-coded range number? not flexible
svg range: 1, file: 'auto_repair.svg' # hard-coded range number? not flexible
svg range: 2, file: 'backup.svg' # hard-coded range number? not flexible
svg range: 3, file: 'backup.svg' # hard-coded range number? not flexible
This gets very hard to maintain over time
svg file: ['auto_repair.svg', 'auto_repair.svg', 'backup.svg', 'backup.svg']
This is slightly easier to maintain, but is more verbose and still hardcoded
svg range: 0..1, file 'auto_repair.svg'
svg range: 2..3, file 'backup.svg'

That’s too much hardcoding of data into our Ruby code. That’s what layouts are for. Now, we’ve already specified a layout file in our prior example. Fortunately, Squib supports multiple layout files, which get combined into a single set of layout styles. So let’s do that: we create our own layout file that defines what a human is and what a drone is. Then just tell svg to use the layout data. The data column is simply an array of factions, the icon call is just connecting the factions to their styles with:

svg layout: data['faction']

So, putting it all together, our code looks like this.

BUT! There’s a very important software design principle we’re violating here. It’s called DRY: Don’t Repeat Yourself. In making the above layout file, I hit copy and paste. What happens later when we change our mind and want to move the faction icon!?!? We have to change TWO numbers. Blech.

There’s a better way: extends

The layout files in Squib also support a special keyword, extends, that allows us to “copy” (or “inherit”) another style onto our own, and then we can override as we see fit. Thus, the following layout is a bit more DRY:

Much better!

Now if we want to add a new faction, we don’t have to copy-pasta any code! We just extend from faction and call in our new SVG file. Suppose we add a new faction that needs a bigger icon - we can define our own width and height beneath the extends that will override the parent values of 75.

Looks great! Now let’s get these cards out to the playtesting table!

At this point, we’ve got a very scalable design for our future iterations. Let’s take side-trip and discuss why this design works.

Why Ruby+YAML+Spreadsheets Works

In software design, a “good” design is one where the problem is broken down into a set of easier duties that each make sense on their own, where the interaction between duties is easy, and where to place new responsibilities is obvious.

In Squib, we’re using automation to assist the prototyping process. This means that we’re going to have a bunch of decisions and responsibilities, such as:

	Game data decisions. How many of this card should be in the deck? What should this card be called? What should the cost of this card be?

	Style Decisions. Where should this icon be? How big should the font be? What color should we use?

	Logic Decisions. Can we build this to a PDF, too? How do we save this in black-and-white? Can we include a time stamp on each card? Can we just save one card this time so we can test quickly?

With the Ruby+YAML+Spreadsheets design, we’ve separated these three kinds of questions into three areas:

	Game data is in a spreadsheet

	Styles are in YAML layout files

	Code is in Ruby

When you work with this design, you’ll probably find yourself spending a lot of time working on one of these files for a long time. That means this design is working.

For example, you might be adjusting the exact location of an image by editing your layout file and re-running your code over and over again to make sure you get the exact x-y coordinates right. That’s fine. You’re not making game data decisions in that moment, so you shouldn’t be presented with any of that stuff. This eases the cognitive complexity of what you’re doing.

The best way to preserve this design is to try to keep the Ruby code clean. As wonderful as Ruby is, it’s the hardest of the three to edit. It is code, after all. So don’t clutter it up with game data or style data - let it be the glue between your styles and your game.

Ok, let’s get back to this prototype.

Illustration: One per Card

The cards are starting to come together, but we have another thing to do now. When playtesting, you need a way of visually identifying the card immediately. Reading text takes an extra moment to identify the card - wouldn’t it be nice if we had some sort of artwork, individualized to the card?

Of course, we’re not going to commission an artist or do our own oil paintings just yet. Let’s get some placeholder art in there. Back to GameIcons, we’re going to use “ninja-mask.svg”, “pirate-skull.svg”, “shambling-zombie.svg”, and “robot-golem.svg”.

Method 1: Put the file name in data

The difference between our Faction icon and our Illustration icon is that the Illustration needs to be different for every card. We already have a convenient way to do something different on every card - our CSV file!

Here’s how the CSV would look:

In our layout file we can center it in the middle of the card, nice and big. And then the Ruby & YAML would look like this:

And our output will look like this:

Method 2: Map title to file name

There are some drawbacks to Method 1. First, you’re putting artwork graphics info inside your game data. This can be weird and unexpected for someone new to your code (i.e. that person being you when you put your project down for a few months). Second, when you’re working on artwork you’ll have to look up what the name of every file is in your CSV. (Even writing this tutorial, I forgot that “zombie” is called “shambling-zombie.svg” and had to look it up, distracting me from focusing on writing.)

There’s another way of doing this, and it’s more Ruby-like because it follows the Convention over Configuration [https://en.wikipedia.org/wiki/Convention_over_configuration] philosophy. The idea is to be super consistent with your naming so that you don’t have to configure that, say, “pirate” has an illustration “pirate-skull”. The illustration should be literally the title of the card - converted to lowercase because that’s the convention for files. That means it should just be called “pirate.svg”, and Squib should know to “just put an SVG that is named after the title”. Months later, when you want to edit the illustration for pirate, you will probably just open “pirate.svg”.

To do this, you’ll need to convert an array of Title strings from your CSV (data['title'] to an array of file names. Ruby’s map was born for this.

Note

If you’re new to Ruby, here’s a quick primer. The map method gets run on every element of an array, and it lets you specify a block (either between curly braces for one line or between do and end for multiple lines). It then returns another Array of the same size, but with every value mapped using your block. So:

[1, 2, 3].map { |x| 2 * x } # returns [2, 4, 6]
[1, 2, 3].map { |x| "$#{x}" } # returns ["$1", "$2", "$3"]
['NARF', 'ZORT'].map { |x| x.downcase } # returns ['narf', 'zort']

 The Squib Way pt 3: Workflows

The Squib Way pt 3: Workflows

Warning

Under construction

 The Squib Way pt 4: Ruby Power!

The Squib Way pt 4: Ruby Power!

Warning

To be written.

 Squib in Action

Squib in Action

Squib is in use by a lot of people! You can learn a lot from looking at how a whole project is put together.

A good way to peruse Squib code is to search for Ruby files on GitHub that have the phrase require 'squib' in them. And these are the just the people who have decided to release their code open source!

My Projects

Here are some of my own board and card games that use Squib. They are all under “active” development, which means that sometimes I leave them alone for long periods of time ;)

	Escape from Scrapland [https://github.com/andymeneely/project-bolt-rats] is a 9-card nano-game solo roguelike that I started July 2017. I’m also doing some video on it, found here [https://www.youtube.com/playlist?list=PLLcm4ZswgXFYk6KKW_ISd8Kf9UGTV9Cfj].

	Your Last Heist [http://github.com/andymeneely/project-timber-wolf] is a big-box cooperative game. Lots of really cool Squib things in here, including lots of Rake features, color+bw, and showing how skills can “level up” on their backs by diff’ing the stats in Squib. You can see what the components look like at the game website [http://yourlastheist.com]. Also: the best game I’ve ever made.

	Victory Point Salad [https://github.com/andymeneely/victory-point-salad]. A card-only game with lots and lots and lots of cards. Pretty straightforward as far as Squib usage goes, but it’s a good peek into how I like to use Squib. Also: the funniest game I’ve made.

	Junk Land [https://github.com/andymeneely/junk-land] A game I made prior to making starting Squib, but then ported over to Squib while developing Squib. Uses some strange features of SVG, but also a good intro. Also: the scrappiest game I’ve made.

Note

Want to donate back to Squib? Volunteer to playtest these games :)

 Squib + Game-Icons.net

Squib + Game-Icons.net

I believe that, in prototyping, you want to focus on getting your idea to the table as fast as possible. Artwork is the kind of thing that can wait for later iterations once you know your game is a good one.

But! Playtesting with just text is a real drag.

Fortunately, there’s this amazing project going on over at http://game-icons.net. They are in the process of building a massive library of gaming-related icons.

As a sister project to Squib, I’ve made a Ruby gem that interfaces with the Game Icons library. With this gem, you can access Game Icons files, and even manipulate them as they go into your game.

Here are some instructions for working with the Game Icons gem into Squib.

Install the Gem

To get the gem, do:

$ gem install game_icons

The library update frequently, so it’s a good idea to upgrade whenever you can.

$ gem up game_icons

If you are using Bundler, go ahead and put this in your Gemfile:

gem 'game_icons'

And then run bundle install to install it from there.

The game_icons gem has no required dependencies. However, if you want to manipulate the SVG

To begin using the gem, just require it:

require 'game_icons'

Find Your Icon

Game-Icons.net has a search engine with some great tagging. Find the icon that you need. The gem will need the “name” of your icon. You can get this easily from the URL. For example:

http://game-icons.net/lorc/originals/meat.html

could be called:

'meat'
:meat

Symbols are okay too (really, anything that responds to to_s will suffice). Spaces are replaced with a dash:

'police-badge'
:police_badge

However, some icons have the same name but different authors. To differentiate these, you put the author name before a slash. Like this:

'lorc/meat'
'andymeneely/police-badge'

To get the Icon, you use GameIcons#get:

GameIcons.get(:meat)
GameIcons.get('lorc/meat')
GameIcons.get(:police_badge)
GameIcons.get('police-badge')
GameIcons.get('andymeneely/police-badge')

If you want to know all the icon names, you can always use:

GameIcons.names # returns the list of icon names

If you end up misspelling one, the gem will suggest one:

irb(main):005:0> GameIcons.get(:police_badg)
RuntimeError: game_icons: could not find icon 'police_badg'. Did you mean any of these? police-badge

Use the SVG File

If you just want to use the icon in your game, you can just use the file method:

svg file: GameIcons.get(:police-badge).file

Recolor the SVG file

The gem will also allow you to recolor the icon as you wish, setting foreground and background:

recolor foreground and background to different shades of gray
svg data: GameIcons.get('glass-heart').
 recolor(fg: '333', bg: 'ccc').
 string

recolor with opacity
svg data: GameIcons.get('glass-heart').
 recolor(fg: '333', bg: 'ccc',
 fg_opacity: 0.25, bg_opacity: 0.75).
 string

Use the SVG XML Data

SVGs are just XML files, and can be manipulated in their own clever ways. GameIcons is super-consistent in the way they format their SVGs - the entire icon is flattened into one path. So you can manipulate how the icon looks in your own way. Here’s an example of using straight string substitution:

svg data: GameIcons.get(:meat).string.gsub('fill="#fff"', 'fill="#abc"')

Here’s a fun one. It replaces all non-white colors in your SVG with black through the SVG:

svg data: GameIcons.get(:meat).string.gsub(':#ffffff', 'snarfblat').
 gsub(/:#[0-9a-f]{6}/, ':#000000').
 gsub('snarfblat', ':#ffffff')

XML can also be manipulated via CSS or XPATH queries via the nokogiri library, which Squib has as a dependency anyway. Like this:

doc = Nokogiri::XML(GameIcons.get(:meat).string)
doc.css('path')[1]['fill'] = #f00 # set foreground color to red
svg data: doc.to_xml

Path Weirdness

Inkscape and Squib’s libRSVG renderer can lead to unexpected results for some icons. This has to do with a discrepancy in how path data is interpreted according to the specification. (Specifically, negative numbers need to have a space before them in the path data.) The fix for this is quick and easy, and the gem can do this for you:

GameIcons.get(:sheep).correct_pathdata.string # corrects path data

 Squib + Git

Squib + Git

Warning

To be written

 Autobuild with Guard

Autobuild with Guard

Warning

Under construction - going to fold this into the Workflow guide. For now, you can see my samples. This is mostly just a brain dump.

 Parameters are Optional

Parameters are Optional

Squib is all about sane defaults and shorthand specification. Arguments to DSL methods are almost always using hashes, which look a lot like Ruby 2.0’s named parameters [http://www.ruby-doc.org/core-2.0.0/doc/syntax/calling_methods_rdoc.html#label-Keyword+Arguments]. This means you can specify your parameters in any order you please. All parameters are optional.

For example x and y default to 0 (i.e. the upper-left corner of the card). Any parameter that is specified in the command overrides any Squib defaults or layout rules.

You must use named parameters rather than positional parameters. For example:

save(:png) # wrong

will lead to an error like this:

C:/Ruby200/lib/ruby/gems/2.0.0/gems/squib-0.0.3/lib/squib/api/save.rb:12:in `save': wrong number of arguments (2 for 0..1) (ArgumentError)
 from deck.rb:22:in `block in <main>'
 from C:/Ruby200/lib/ruby/gems/2.0.0/gems/squib-0.0.3/lib/squib/deck.rb:60:in `instance_eval'
 from C:/Ruby200/lib/ruby/gems/2.0.0/gems/squib-0.0.3/lib/squib/deck.rb:60:in `initialize'
 from deck.rb:18:in `new'
 from deck.rb:18:in `<main>'

Instead, you must name the parameters:

save(format: :png) # the right way

Warning

If you provide an option to a DSL method that the DSL method does not recognize, Squib ignores the extraenous option without warning. For example, these two calls have identical behavior:

save_png prefix: 'front_'
save_png prefix: 'front_', narf: true # narf has no effect

This can be troublesome when you accidentally misspell an option and don’t realize it.

 Squib Thinks in Arrays

Squib Thinks in Arrays

When prototyping card games, you usually want some things (e.g. icons, text) to remain the same across every card, but then other things need to change per card. Maybe you want the same background for every card, but a different title.

The vast majority of Squib’s DSL methods can accept two kinds of input: whatever it’s expecting, or an array of whatever it’s expecting. If it’s an array, then Squib expects each element of the array to correspond to a different card.

Think of this like “singleton expansion”, where Squib goes “Is this an array? No? Then just repeat it the same across every card”. Thus, these two DSL calls are logically equivalent:

Squib::Deck.new(cards: 2) do
 text str: 'Hello'
 text str: ['Hello', 'Hello'] # same effect
end

But then to use a different string on each card you can do:

Squib::Deck.new(cards: 2) do
 text str: ['Hello', 'World']
end

Note

Technically, Squib is only looking for something that responds to each (i.e. an Enumerable). So whatever you give it should just respond to each and it will work as expected.

 Layouts are Squib’s Best Feature

Layouts are Squib’s Best Feature

Working with tons of options to a method can be tiresome. Ideally everything in a game prototype should be data-driven, easily changed, and your Ruby code should readable without being littered with magic numbers [http://stackoverflow.com/questions/47882/what-is-a-magic-number-and-why-is-it-bad].

For this, most Squib methods have a layout option. Layouts are a way of setting default values for any parameter given to the method. They let you group things logically, manipulate options, and use built-in stylings.

Think of layouts and DSL calls like CSS and HTML: you can always specify style in your logic (e.g. directly in an HTML tag), but a cleaner approach is to group your styles together in a separate sheet and work on them separately.

To use a layout, set the layout: option on Deck.new to point to a YAML file. Any command that allows a layout option can be set with a Ruby symbol or string, and the command will then load the specified options. The individual command can also override these options.

For example, instead of this:

deck.rb
Squib::Deck.new do
 rect x: 75, y: 75, width: 675, height: 975
end

You can put your logic in the layout file and reference them:

custom-layout.yml
bleed:
 x: 75
 y: 75
 width: 975
 height: 675

Then your script looks like this:

deck.rb
Squib::Deck.new(layout: 'custom-layout.yml') do
 rect layout: 'bleed'
end

The goal is to make your Ruby code separate the data decisions from logic. For the above example, you are separating the decision to draw rectangle around the “bleed” area, and then your YAML file is defining specifically what “bleed” actually means. (Who is going to remember that x: 75 means “bleed area”??) This process of separating logic from data makes your code more readable, changeable, and maintainable.

Warning

YAML is very finnicky about not allowing tab characters. Use two spaces for indentation instead. If you get a Psych syntax error, this is likely the culprit. Indendation is also strongly enforced in Yaml too. See the Yaml docs [http://www.yaml.org/YAML_for_ruby.html] for more info.

 Be Data-Driven with XLSX and CSV

Be Data-Driven with XLSX and CSV

Squib supports importing data from ExcelX (.xlsx) files and Comma-Separated Values (.csv) files. Because Squib Thinks in Arrays, these methods are column-based, which means that they assume you have a header row in your table, and that header row will define the name of the column.

Squib::DataFrame, or a Hash of Arrays

In both DSL methods, Squib will return a “data frame” (literally of type Squib::DataFrame). The best way to think of this is a Hash of Arrays, where each column is a key in the hash, and every element of each Array represents a data point on a card.

The data import methods expect you to structure your Excel sheet or CSV like this:

	First row should be a header - preferably with concise naming since you’ll reference it in Ruby code

	Rows should represent cards in the deck

	Columns represent data about cards (e.g. “Type”, “Cost”, or “Name”)

Of course, you can always import your game data other ways using just Ruby (e.g. from a REST API, a JSON file, or your own custom format). There’s nothing special about Squib’s methods in how they relate to Squib::Deck other than their convenience.

See xlsx and csv for more details and examples on how the data can be imported.

The Squib::DataFrame class provides much more than what a Hash provides, however. The Squib::DataFrame

Quantity Explosion

If you want more than one copy of a card, then have a column in your data file called Qty and fill it with counts for each card. Squib’s xlsx and xlsx methods will automatically expand those rows according to those counts. You can also customize that “Qty” to anything you like by setting the explode option (e.g. explode: 'Quantity'). Again, see the specific methods for examples.

 Unit Conversion

Unit Conversion

By default, Squib thinks in pixels. This decision was made so that we can have pixel-perfect layouts without automatically scaling everything, even though working in units is sometimes easier. We provide some conversion methods, including looking for strings that end in “in”, “cm”, or “mm” and computing based on the current DPI. The dpi is set on Squib::Deck.new (not config.yml).

Cells

A “cell” is a custom unit in Squib that, by default, refers to 37.5 pixels. In a 300 DPI situation (i.e. the default), that refers to a 1/8 inch or 3.175mm. This tends to be a standard unit of measure in a lot of templates. By specifying your units in cells, you can increase your rapid prototyping without having to multiply 37.5.

The cell_px measure is configurable. See Configuration Options.

To use the cell unit, you need to give Squib a string ending in cell, cells, or just c. For example:

	2 cells

	1cell

	0.5c

See more examples below.

Samples

_units.rb

Here are some examples, which lives here [https://github.com/andymeneely/squib/tree/master/samples/units.rb]

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

	require 'squib'

Squib::Deck.new(width: '1.5in', height: '1.5in') do
 background color: :white

 # We can use our DSL-method to use inches
 # Computed using @dpi (set to 300 by default)
 bleed = inches(0.125)
 cut = inches(1.25)
 rect x: bleed, y: bleed,
 width: cut, height: cut,
 dash: '0.5mm 0.5mm' # yes, units are in dashes too

 # other units too
 cm(2) # We can also use cm this way
 cm(2) + inches(2) # We can mix units too

 # Or we can use a string ending with cm or in
 safe_margin = '0.25 in' #you can have a space too
 safe_width = '1 in'
 safe_height = '1.0 in ' # trailing space is ok too
 rect x: safe_margin, y: safe_margin,
 	 width: safe_width, height: safe_height,
 radius: '2 mm '

 # Angles are also automatically converted to radians if you use deg
 svg file: '../spanner.svg',
 x: 100, y: 100, width: 40, height: 40, angle: '30deg'

 # We can also do stuff in layout. Check out the yml file...
 # (even cleaner in Yaml since we don't need quotes!)
 use_layout file: 'using_units.yml'
 text str: 'Hello.', layout: :example
 svg file: '../spanner.svg', layout: :angled

 save prefix: 'units_', format: :png

 # But wait... there's more! See _shorthands.rb for more fanciness with units
end

 XYWH Shorthands

XYWH Shorthands

For the arguments x, y, width, and height, a few convenient shorthands are available.

	middle for x and width refer to the deck’s width / 2

	middle for y and height refer to the deck’s height / 2

	The word center behaves the same way

	deck refers to the deck’s width for x and width

	deck refers to the deck’s height for y and height

	You can offset from the middle by using + or - operators, e.g. middle + 1in

	You can offset from the deck width or height using the + or - operators, e.g. deck - 1in or deck - 2mm

	You can offset from the deck width or height using, e.g. deck / 3

	Works with all unit conversion too, e.g. middle + 1 cell. See Unit Conversion.

These are all passed as strings. So you will need to quote them in Ruby, or just plain in your layout YAML.

Note that the following are NOT supported:

	The += operator when using extends in a layout file

	Complicated formulas. We’re not evaluating this as code, we’re looking for these specific patterns and applying them. Anything more complicated you’ll have to handle with Ruby code.

Samples

_shorthands.rb

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

	require_relative '../../lib/squib'

Lots of DSL methods have shorthands that are accepted for
x, y, width, and height parameters.
Squib::Deck.new(width: '0.5in', height: '0.25in') do
 background color: :white

 # middle for x and y will resolve to half the height
 text str: 'xymiddle', font: 'Sans Bold 3', hint: :red,
 x: 'middle', y: :middle

 # 'center' also works
 rect width: 30, height: 30,
 x: :center, y: 'center'

 # Applies to shapes
 triangle x1: 20, y1: 20,
 x2: 60, y2: 20,
 x3: :middle, y3: :middle

 # We can also do width-, height-, width/, height/
 rect x: 20, y: 5, stroke_color: :green,
 width: 'deck - 0.1in', height: 10

 rect x: 10, y: 50, width: 10, height: 'deck / 3',
 stroke_color: :purple

 # And middle+/-
 rect x: 'middle + 0.1in', y: 'center - 0.1in',
 width: '0.1in', height: '0.1in', fill_color: :blue

 # Layouts apply this too.
 use_layout file: 'shorthands.yml'
 rect layout: :example

 # HOWEVER! Shorthands don't combine in an "extends" situation,
 # e.g. this won't work:
 # parent:
 # x: middle
 # child:
 # extends: parent
 # x: += 0.5in

 # These shorthands are not intended for every xywh parameter or
 # length parameter, see docs for when they do or do not apply.

 save_png prefix: 'shorthand_'
end

 Specifying Colors & Gradients

Specifying Colors & Gradients

Colors

by hex-string

You can specify a color via the standard hexadecimal string for RGB (as in HTML and CSS). You also have a few other options as well. You can use:

	12-bit (3 hex numbers), RGB. e.g. '#f08'

	24-bit (6 hex numbers), RRGGBB. e.g. '#ff0088'

	48-bit (9 hex numbers), RRRGGGBBB. e.g. '#fff000888'

Additionally, you can specify the alpha (i.e. transparency) of the color as RGBA. An alpha of 0 is full transparent, and f is fully opaque. Thus, you can also use:

	12-bit (4 hex numbers), RGBA. e.g. '#f085'

	24-bit (8 hex numbers), RRGGBBAA. e.g. '#ff008855'

	48-bit (12 hex numbers), RRRGGGBBBAAA. e.g. '#fff000888555'

The # at the beginning is optional, but encouraged for readability. In layout files (described in Layouts are Squib’s Best Feature), the # character will initiate a comment in Yaml. So to specify a color in a layout file, just quote it:

this is a comment in yaml
attack:
 fill_color: '#fff'

by name

Under the hood, Squib uses the rcairo color parser [https://github.com/rcairo/rcairo/blob/master/lib/cairo/color.rb] to accept around 300 named colors. The full list can be found here [https://github.com/rcairo/rcairo/blob/master/lib/cairo/colors.rb].

Names of colors can be either strings or symbols, and case does not matter. Multiple words are separated by underscores. For example, 'white', :burnt_orange, or 'ALIZARIN_CRIMSON' are all acceptable names.

by custom name

In your config.yml, as described in Configuration Options, you can specify custom names of colors. For example, 'foreground'.

Gradients

In most places where colors are allowed, you may also supply a string that defines a gradient. Squib supports two flavors of gradients: linear and radial. Gradients are specified by supplying some xy coordinates, which are relative to the card (not the command). Each stop must be between 0.0 and 1.0, and you can supply as many as you like. Colors can be specified as above (in any of the hex notations or built-in constant). If you add two or more colors at the same stop, then the gradient keeps the colors in the in order specified and treats it like sharp transition.

The format for linear gradient strings look like this:

'(x1,y1)(x2,y2) color1@stop1 color2@stop2'

The xy coordinates define the angle of the gradient.

The format for radial gradients look like this:

'(x1,y1,radius1)(x2,y2,radius2) color1@stop1 color2@stop2'

The coordinates specify an inner circle first, then an outer circle.

In both of these formats, whitespace is ignored between tokens so as to make complex gradients more readable.

If you need something more powerful than these two types of gradients (e.g. mesh gradients), then we suggest encapsulating your logic within an SVG and using the svg method to render it.

Samples

Code is maintained in the repository here [https://github.com/andymeneely/squib/tree/master/samples] in case you need some of the assets referenced.

Sample: colors and color constants

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	require 'squib'

Squib::Deck.new(width: 825, height: 1125, cards: 1) do
 background color: :white

 y = 0
 text color: '#f00', str: '3-hex', x: 50, y: y += 50
 text color: '#f00', str: '3-hex (alpha)', x: 50, y: y += 50
 text color: '#ff0000', str: '6-hex', x: 50, y: y += 50
 text color: '#ff000099', str: '8-hex(alpha)', x: 50, y: y += 50
 text color: '#ffff00000000', str: '12-hex', x: 50, y: y += 50
 text color: '#ffff000000009999', str: '12-hex (alpha)', x: 50, y: y += 50
 text color: :burnt_orange, str: 'Symbols of constants too', x: 50, y: y += 50
 text color: '(0,0)(400,0) blue@0.0 red@1.0', str: 'Linear gradients!', x: 50, y: y += 50
 text color: '(200,500,10)(200,500,100) blue@0.0 red@1.0', str: 'Radial gradients!', x: 50, y: y += 50
 # see gradients.rb sample for more on gradients

 save_png prefix: 'colors_'
end

This script generates a table of the built-in constants
colors = (Cairo::Color.constants - %i(HEX_RE Base RGB CMYK HSV X11))
colors.sort_by! do |c|
 hsv = Cairo::Color.parse(c).to_hsv
 [(hsv.hue / 16.0).to_i, hsv.value, hsv.saturation]
end
w, h = 300, 50
deck_height = 4000
deck_width = (colors.size / ((deck_height / h) + 1)) * w
Squib::Deck.new(width: deck_width, height: deck_height) do
 background color: :white
 x, y = 0, 0
 colors.each_with